Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications

نویسندگان

  • Christine M. Zgrabik
  • Evelyn L. Hu
  • John A. Paulson
چکیده

Alternative materials for plasmonic devices have garnered much recent interest. A promising candidate material is titanium nitride. Although there is a substantial body of work on the formation of this material, its use for plasmonic applications requires a more systematic and detailed optical analysis than has previously been carried out. This paper describes an initial optimization of sputtered TiN thin films for plasmonic performance from visible into near-IR wavelengths. The metallic behavior of TiN films exhibits a sensitive dependence on the substrate and deposition details. We explored reactive and non-reactive sputter deposition of TiN onto various substrates at both room temperature and 600°C. Metallic character was compared for films grown under different conditions via spectroscopic ellipsometry and correlated with compositional and structural measurements via x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and scanning transmission electron microscopy (STEM). ©2015 Optical Society of America OCIS codes: (250.5403) Plasmonics; (240.2130) Ellipsometry and polarimetry; (240.6675) Surface photoemission and photoelectron spectroscopy; (310.6860) Thin films, optical properties; (310.1860) Deposition and fabrication. References and links 1. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013). 2. U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015). 3. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011). 4. J. A. Dionne and H. A. Atwater, “Plasmonics: Metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012). 5. J. T. Guske, J. Brown, A. Welsh, and S. Franzen, “Infrared surface plasmon resonance of AZO-Ag-AZO sandwich thin films,” Opt. Express 20(21), 23215–23226 (2012). 6. S. Franzen, “Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008). 7. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong LightMatter Interactions,” Nano Lett. 11(8), 3370–3377 (2011). 8. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010). 9. U. Guler, A. Boltasseva, and V. M. Shalaev, Science 344, 263–264 (2014). 10. D. Steinmiller-Nethl, R. Kovacs, E. Gornik, and P. Rodhammer, “Excitation of surface plasmons on titanium nitride films:determination of the dielectric function,” Thin Solid Films 237(1-2), 277–281 (1994). 11. A. Boltasseva and H. A. Atwater, “Materials science. Low-Loss Plasmonic Metamaterials,” Science 331(6015), 290–291 (2011). 12. N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry,” J. Appl. Phys. 109(4), 043104 (2011). 13. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012). 14. U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications,” Appl. Phys. B 107(2), 285–291 (2012). #246076 Received 16 Jul 2015; revised 29 Oct 2015; accepted 2 Nov 2015; published 9 Nov 2015 © 2015 OSA 1 Dec 2015 | Vol. 5, No. 12 | DOI:10.1364/OME.5.002786 | OPTICAL MATERIALS EXPRESS 2786 15. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014). 16. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014). 17. H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, and L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Tech. 214, 91–96 (2013). 18. B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985). 19. P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films 415(1-2), 151–159 (2002). 20. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxies: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887– 898 (2010). 21. M. Delfino, J. A. Fair, and D. Hodu, “Xray photoemission spectra of reactively sputtered TiN,” J. Appl. Phys. 71(12), 6079 (1992). 22. C.-L. Liang, G.-A. Cheng, R.-T. Zheng, H.-P. Liu, J.-C. Li, H.-F. Zhang, G.-J. Ma, and Y.-L. Jiang, “Composition and texture of TiN thin films fabricated by ECR enhanced sputtering deposition,” Surf. Coat. Tech. 201(9-11), 5537–5540 (2007). 23. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45(10), 2051–2062 (1998). 24. N. White, A. L. Campbell, J. T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. V. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014). 25. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001). 26. S. Adachi and M. Takahashi, “Optical properties of TiN films deposited by direct current reactive sputtering,” J. Appl. Phys. 87(3), 1264–1269 (2000). 27. F. Chen, S.-W. Wang, L. Yu, X. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833–1847 (2014). 28. J. H. Kang and K. J. Kim, “Structural, optical, and electronic properties of cubic TiN x compounds,” J. Appl. Phys. 86(1), 346–350 (1999). 29. B. Karlsson, R. P. Shimshock, B. O. Seraphin, and J. C. Haygarth, “Optical Properties of CVD-Coated TiN, ZrN and HfN,” Phys. Scr. 25(6A), 775–779 (1982). 30. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel) 8(6), 3128–3154 (2015). 31. J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical Properties of Substoichiometric TiNx,” Thin Solid Films 78(2), 161–165 (1981). 32. S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Phys. 115(3), 033516 (2014). 33. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). 34. J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61(11), 1290–1292 (1992). 35. L.-J. Meng and M. P. dos Santos, “Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures,” Surf. Coat. Tech. 90(1-2), 64–70 (1997). 36. J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4(6), 3059–3065 (1986). 37. A. Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films 518(15), 4087–4090 (2010). 38. A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films,” Thin Solid Films 311(1-2), 93–100 (1997). 39. C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, “Low temperature oxidation behavior of reactively sputtered TiN by xray photoelectron spectroscopy and contact resistance measurements,” J. Vac. Sci. Technol. A 4(6), 2784–2788 (1986). 40. P. Prieto and R. E. Kirby, “Xray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputterdeposited TiN films and their oxidation properties,” J. Vac. Sci. Technol. A 13(6), 2819–2826 (1995). 41. N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An xray photoelectron spectroscopy study,” J. Appl. Phys. 72(7), 3072–3079 (1992). 42. T. P. Thorpe, A. A. Morrish, and S. B. Qadri, “Effect of grain size on the oxidation kinetics of sputtered titanium nitride films,” J. Vac. Sci. Technol. A 6(3), 1727–1729 (1988). 43. M. J. Vasile, A. B. Emerson, and F. A. Baiocchi, “The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering,” J. Vac. Sci. Technol. A 8(1), 99–105 (1990). #246076 Received 16 Jul 2015; revised 29 Oct 2015; accepted 2 Nov 2015; published 9 Nov 2015 © 2015 OSA 1 Dec 2015 | Vol. 5, No. 12 | DOI:10.1364/OME.5.002786 | OPTICAL MATERIALS EXPRESS 2787 44. N. Saoula, K. Henda, and R. Kesri, “Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films,” J. Plasma Fusion Res. Series 8, 1403–1407 (2009). 45. S. Ohya, B. Chiaro, A. Megrant, C. Neill, R. Barends, Y. Chen, J. Kelly, D. Low, J. Mutus, P. J. J. O’Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, B. D. Schultz, C. J. Palmstrøm, B. A. Mazin, A. N. Cleland, and J. M. Martinis, “Sputtered TiN films for superconducting coplanar waveguide resonators,” arXiv:1306.2966 (2013). 46. L. Wen and R. Huang, “Low Temperature Deposition of Titanium Nitride,” J. Mater. Sci. Technol. 14, 289–293

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decorative Titanium Nitride Colored Coatings on Bell-Metal by Reactive Cylindrical Magnetron Sputtering

The transition metal nitrides like titanium nitride exhibit very interesting color variation properties depending on the different plasma deposition conditions using cylindrical magnetron sputtering method. It is found in this deposition study that nitrogen partial pressure in the reactive gas discharge environment plays a significant role on the color variation of the film coatings on bell-met...

متن کامل

EFFECTS OF SUBSTRATE COATING WITH METAL SPRAYING ON RESIDUAL STRESSES IN SPUTTERED TITANIUM-NITRIDE FILMS, Y.Miyoshi, H. Tanabe, T. Takamatsu, T. Sameshima, T. Ejima and K. Ueda, pp. 163-168

A fundamental study on the effect that pre-coating a substrate with metal spraying has on the properties of sputtered Titanium-nitride film (TiN film) was carried out. The residual stresses in TiN films sputtered on the substrates coated with various spray coatings were measured by X-ray stress measurement. It was observed that the residual stresses in TiN films sputtered on substrates coated b...

متن کامل

Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance

DENSE PERIODICAL PATTERNS IN PHOTONIC DEVICES:TECHNOLOGY FOR FABRICATION AND DEVICE PERFORMANCEbySABARISH CHANDRAMOHANDecember 2016 Advisor: Dr. Ivan AvrutskyMajor: Electrical EngineeringDegree: Doctor of Philosophy For the fabrication, focused ion beam parameters are investigated to successfullyfabricate dense periodical patterns, such as gratings, on hard transitio...

متن کامل

Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold

Metal nitrides have been proposed to replace noble metals in plasmonics for some specific applications. In particular, while titanium nitride (TiN) and zirconium nitride (ZrN) possess localized plasmon resonances very similar to gold in magnitude and wavelength, they benefit from a much higher sustainability to temperature. For this reason, they are foreseen as ideal candidates for applications...

متن کامل

Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials.

Titanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold, however, TiN is complementary metal oxide semiconductor-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN exhibits low-index surfaces with surface energies that are lower than those of the noble metals which facilitates the growth of smooth, ultrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015